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Statistical mechanics of the Bayesian image restoration under spatially correlated noise
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We investigated the use of the Bayesian inference to restore noise-degraded images under conditions of
spatially correlated noise. The generative statistical models used for the original image and the noise were
assumed to obey multidimensional Gaussian distributions, whose covariance matrices are translational invari-
ant. We derived an exact description to be used as the expectation for the restored image by the Fourier
transformation and restored an image distorted by spatially correlated noise by using a spatially uncorrelated
noise model. We found that the resulting hyperparameter estimations for the minimum error and maximal
posterior marginal criteria did not coincide when the generative probabilistic model and the model used for
restoration were in different classes, while they did coincide when they were in the same class.
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|. INTRODUCTION value, &, of an original image can be written in a multiple
Gaussian distribution as
Recent research has shown that the Bayesian inference is

a useful approach to the image restoration probJém3]. _ 1

However, previous research has usually assumed that the su- P($)= Zpriod B.1) exg—H(&4.h)], @
perimposed noise is not correlated between pikéls12].

Statistical mechanics provides a useful method for analyzing H(&B,h=E"(BG+hI)§E, 2

the image restoration problepd,5]. Still, when we take op-

tical effects into consideration, it seems natural to take spawhereB andh are positive scalar value§ is a matrix, and

tially correlated noise into account. We have investigated im{ is the unit matrix. The partition functiory,io(8,h), is

age restoration under the condition of spatially correlatedyiven by

noise. We considered a case, in which both the original im-

age and noise obey a Gaussian distribution composed of Zpriod B:0)=(2m)N?2(BG+hI)| 72 ()]

translational-symmetric matrices. We were able to diagonal- . g -

ize the Gaussian distribution by using Fourier transforma—'\mte.that Eq.(.2) is called the Hamiltonian in st.gtlsucal me-

tion. While previous research was done using spatially unghanlc_s. In_thls paper, we argue th_at the maBiis transla-

correlated noise, we considered the availability of a spatiallyfional invariant and that elemed@; ; is given[S] by

uncorrelated noise model against the spatially correlated

noise.. o Gij=2d8i-po~ 2 Si-p-s— 2 Si-par @
We considered two methods for estimating the hyperpa- o o

rameters. The first is minimizing the mean squared error— ) ) ,

the hyperparameters are set so that the mean squared errol/{g€re thed-dimensional vectod'is

minimized. However, minimizing the mean squared error is -

not applicable to the image restoration problem because we 6=(10,...,0.(010....0,...(0.....00). (¥

need the original image to practice this method. The secongh,q s

method is maximizing the marginal likelihogé}]—the hy- v

perparameters are estimated by maximizing the marginal

likelihood acquired from only the distorted image. When the 1 (i=))

noise probabilities for generating and restoring coincidences i j= . (6)

are the same, the results given by the two methods are the 0 (i#)).

same. When the probabilities are different, we found tha

they are not same.

ij in Eq. (4) is the Kronecker delta, which is assumed

Equation (4) means that interactions occur only between
nearest-neighbor pixels. I8 takes a large value, i.e., the
interaction of the first term has a large effect, the neighboring
Il. MODEL pixels tend to take the same value. Whieris large, the
absolute value of the pixels tends to be small. Furthermore,

The images we see in our daily life are always two di-\;o se a periodic boundary condition,

mensional, although we assumedalimensional image for
mathematical generalization, where the length of each side is E=E&. 5. (7)
L and the total number of pixeldy, is LY. Theith pixel
The distorted imager={;}, is generated according to the
following conditional probability, which obeys a Gaussian
*Electronic address: juntuzu@brain.riken.go.jp distribution:
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Poul 1= exr{—l(f—fﬂre‘l(r—g)} (8) P<§):;exp[—2<ﬁék+h>”é[§k (17)
ou 2 ' Zprior(lg!h) k '

Znoise

Znoisd R) = (2) VR M, 9) -
Gy=2, [2—2 cogk- 8)]. (18)

whereR s a translational invariant covariance matrix. In this o

paper, we consider the following spatially correlated noise:

(i-i)?

K2

Furthermore, we diagonaliZ®, ; in Eq. (10),

T Re=(L-a)b?+ab?y e "oogk-l),  (19)

Ri,j: (1- a)bzéi,j-f- abzexp{ -

O=<as1. The noise obeys an identical independent Gaussialynere the range of, which is a component of vectdr is
distribution with mean 0 and variand®, whena=0. given by ’

A general strategy commonly used in image restoration is
to apply the Bayes formulation to the posterior probability. —(L-1=<I<L-1. (20
Here, o is a restoration image based on the Bayes formula-
tion. When a distorted image, is given, one can use the We can execute the Fourier transformation on the inside of

formulation to calculate the restored image, exp in Eq.(8) in the same way as in Eql),
Poul(do)P(0) exd —Hefil e e
P(o|n= oul 7 = SLLEE Pout("lg)zz —exg — 3 Ek R (80 (1o €20 |
| doPasop(@ [ drext-re o
11
) We define(-) as denoting the thermal average based on the
where Bayes formula for the posterior probabili§(o|7) in Eq.

. ) - (12). The expectation of the restored imagg, is thus as-
Heri= o (BG+hlho+3(7—0) R™(7—0) (12)  sumed to be

is an effective Hamiltonian. 1 o
(o) =5 2 (o€ (22
lll. THEORY Nk
A. Expectation of the restored image Using Eq.(11), the expectation of the Fourier component,

Since the covariance matrices given by E@s.and (10) ok, can be written as

are translational invariant, they can be diagonalized using the .
discrete Fourier transformation. f I1 doy e et

The discrete Fourier transformation is ~ -~ ~ K’
<0k>:J 1;[ do P (o] 7)= —,

~ 1 . H do e Heft
== e (13 K

T (23
and the inverse Fourier transformation is Whereﬁleff is obtained by applying the Fourier transforma-
tion to Eq.(12) as follows:

1 -

§=— 2 4e", (14
N o ISR 1 - -
Hetr= 2 (BGy+h)oyo_y+ 2 — (=0
wherei is the imaginary unit, ankl is ad-dimensional vector k K 2Ry

same ag, and the degree of freedom Lig"

X(T_—0o—y). (24)
Ej: =LI=N, Ek: =LI=N. (15 5 h andR, are unknown adjustable parameters that deter-
mine the properties of the original image and noise. One of
Moreover, each component &ftakes the value our major focuses here is how to estimate these hyperparam-
eters precisely.
2 4 2(L-1) To proceed further, we have to assume some explicit form
Ormgm.- T ™ 18 of the source prior and noise posterior formations, which are

used when we restore the image. In this paper, we define
We can diagonalize Eq1) by using the Fourier representa- both of these probability formations as the same formation
tion, except that they have different hyperparameters. We define
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the hyperparameters that correspongtt, andR, as,B, h,

andﬁk, respectively. Ifﬁk is independent ok, the noise is
spatially uncorrelated.

Substituting
& am A 1 & 1
Ak—ﬂGk-i- h+ —, Bk_T (25)
2Ry 2R,
into Egs.(23) and (24), we get
- By
(o) =3 7« (26)
K
Consequently{o;) in Eq. (22) is given by
1 o
Ti—=— cogK-(j—1)]
1 3y 2Ry
N= 2
<0-J> N X i . R 1 ( 7)
BG +h+ —
2R,

In this paper, we regard ER7) as representing the restored
image.

B. Minimization of mean squared error

In this section, we estimate hyperparamefgrs, andﬁk
by using the criterion defined by E(7) for minimizing the

mean squared error between the original and restored im-

ages. The expectation of this mean squared €efrgrjs rep-
resented by

1
Ei= g 2 <f,——<<r,—>)2H, (28)

where||- | denotes the data average of a simultaneous distr

bution P(7,& =P, (7 &Ps(d.
Applying the Fourier transformation to E(28), we can
derive the next representation,

1 ~ o~ o~ ~
Ei=g 2 G (o) E (el (29

SinceP(7,£) is diagonalized by the Fourier transformation,
we can easily calculate eaghas follows:

|(E—(T) (E_— (T (30)
1 B |’ By |?
~ o~ |~ k ~ ~ ke~
:ZJ f dédry fk__AA—k Tk exf{_Ak &— ~—ka
B2\ _
— ( By — K_t) |rk|2] (31)
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1 B, By 1
== ="z | T Q=3 (32
2Ak Ak Ak ~ ZBk
2B, — —
Ax
whereA,, By, andZ substitute for
A= BG, +h+ ! B ! (33
PP RS T 2R
Z:f f dfdekeX _Ak fk_ =Tk _(Bk_ ,_,_) |’Tk|2
k Ax
(34

Therefore, the mean squared error is represented by

1 1
El:mzk _
k
1 1 ’
2R, oR
+ k : k
Gyth+ — BG+h+ —
BGy 2R, BG =
BG, +h+ !
UUoR
Xl— (35
— é +h
2Rk('8 kth)
When the conditions
B=pg, h=h, and Re=R, (36)

hold, the mean squared error takes the following minimum:

! (37)
BG, +h+ !
TR
More precisely, when the ratig:h:R, is equal to the ratio
B:h:Ry, E; is the minimum given by E¢(37). Note that this
equation represents the limit of the restoration.
Likewise, we can derive the mean squared efor, be-

tween the original image and the distorted image as being
represented by

(39

1 JU
Ezz‘ﬁ 2]: (§—1)?
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1 N/2 L B BE |2
L 05 | = H—Aex —| B | Ind*|- 43
g K ’.Ak Ak
® 04
2 © Because In is a monotonically increasing function that
© 0.3 maximizes the logarithmic marginal likelihood, maximizing
o (© In P(7) is equivalent to maximizindp (7).
2 0.2 The logarithmic marginal likelihood IR(7) can be writ-
g —— ®_ | ten as
0.1 ~
= T Zposteroh P, R)
00 | ' ‘ ‘ In[P(#)]=In| —22esiret £ILR)
0.0 0.2 0.4 0.6 0.8 1.0 Znoisd R) Zriol 8,1)
a from Eq. (10)
1 P 1 N
FIG. 1. Mean squared error between original image and each =3 > In| BG+h+ T) ) In(27)
restored image. Horizontal axis denotesrom Eq. (10); vertical K 2Ry

axis denotes the mean squared ergay.Optimum decode given by

Eq. (37). (B) Rest(zred using criterion of minimum restored error. - 2 |n(ﬁk)+ E 2 In(,@Gk—i-ﬁ)
(C) Restored using estimated by maximizing marginal likelihood. Kk 2%

(D) Restored usingd,h, andr, all estimated by maximizing mar-

N[

ginal likelihood. (E) Error before decoding given by E9). (Bé +ﬁ)i
k 2
2 2Ry ,
1 ~ 1 ~ - —— Y (44
=_ =_ —" v PN 1 K
NEkRk NZR,,, b2. (39) C BEhe
2Ry

E, depends only on the diagonal element of the noise cova-
riance matrix. IV. RESULT

In this section, we consider a method to restore an image
distorted by spatially correlated noise by means of the spa-
The minimized mean squared error criterion, generallytially uncorrelated noise model. To do this, we repl&tas
cannot be used since the unknown original image itself isne of the hyperparameters,
needed to evaluate the squared error. If we already had the

C. Maximization of the marginal likelihood

original image, there would be no need to restore the dis- R .=ré, ﬁFF- (45)
torted image. Hence, in this paper, we argue for using the ! !
maximization of the marginal likelihood. We can now write Eq(27) as

As shown in Egs(1) and(8), we already know the source
prior and noise probabilities. Using both probabilities, we ricos{k-('—i)]
can deriveP(7), ior J

1
(f™)=N 2 2 T @9

P(r)= [ dsPo(ASRIP(SBR). (@0 e

Figure 1 shows the analytical and simulated mean squared
Maximization of the marginal likelihood is used to set the €'T0rS between the original image and each restored image,

hyperparameters3,h, andR, to use, and to obtain the maxi- Fig. 2 shovgs the Pstimatéd and Fig. 3 shows the estimated
mum value ofP(7) for distorted imager. parameter$ and 8. We used 100 artificially generated two-
With Egs.(3) and(9), the marginal likelihood is given by dimensionalN=16" images with hyperparametefs= 1.0,
h=1.0, b=0.75, andk=3.0. The horizontal axes of these
7 ABAR) three figures denota from Eq. (10); a represents the mag-
postenot = » (41)  nitude of the spatial correlation of the noise={0 implies no
Z noisd R) Zpriod B,1) spatial correlation

P(7) is called the marginal likelihood.

P(7r)=

where A. Minimization of mean squared error

Curve(E) in Fig. 1 represents errd, given by Eq.(39),
Zposterio(ﬂahaR):H f dSexg —Herf) (42) that is, the mean squared error between the original gnd dis-
k torted images(The dashed line represents the analytical er-
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w
3}

= = N N w
=] e ] o o (=]

Estimated and optimal value

0.0 0.2

0.6
a from Eq. (10)

FIG. 2. Estimated. Horizontal axis denotea from Eq. (10);
vertical axis denotes average estimatedbtained by maximizing
marginal likelihood or optimaIF obtained by using criterion of
minimum restored error. Solid lin) denotes used in curveB)
of Fig. 1, dashed lin¢C) denoteg used in curveC) of Fig. 1, and
dotted line(D) denotes used in curveD) of Fig. 1.

ror, and the solid line represents the simulated re$uls:
cause the numbers of pixelNE 167) and sampleg100)
were finite, the simulated results have some fluctuation. This
fluctuation tends to asymptotically disappear as the numbers
are increased.

Curve(A) in Fig. 1 represents minimum errém given
by Eg. (37), that is, the mean squared error between the
original and distorted images restored using the spatially cor-
related noise model with the best parameters. HeBge,
implies the limits of image restoration—no further error re-
duction is possible. Curv@) in Fig. 1 represents the error in

Estimated and original value
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3.0p

2.5}

2.0-_\_ﬁ

150, R
ol B T
ost 7
................... )
7 B T
05 02 04 0.6 0.8 10

1
IN[Papy(7)]=—~5 2 In

a from Eq. (10)

FIG. 3. Estimatech (dotted ling and 3 (dashed ling Both
values were averaged with respect to 100 artificially generated im-
ages. Horizontal axis denotasrom Eq. (10); vertical axis denotes
average estimateltl or ,Z% or actualh or 8. Solid line denotes actual
h(=B=1.0).

BG,+h ! Nl 2
Bk++§ En(’ﬂ)

N . 1 e "
—Eln(r)+§; In(BG+h)

e 1
-3 7.

BG, +h+ —
AG« 2r

(47)

an image restored using the uncorrelated noise model. Th&¥/¢ can derive the conditions necessary for the extremal

restoration was done using hyperparametéom Eq. (28),
which was acquired minimizing the mean squared e(fidre
dashed line represents the analytical results, and the solid
line represents the simulated resuylt€urve (B) in Fig. 2

shows the optimal values af by minimizing the mean
squared error.

Note that whena=0.0, curve(A) in Fig. 1 is equal to
curve B). Curve(B) in Fig. 1 shows the optimum perfor-
mance when using the minimization of the mean squared
error as the criterion. However, as mentioned, the hyperpa-
rameters cannot be estimated in practice by minimizing the
mean squared error. Therefore, we will discuss how the error
can be reduced by maximizing the logarithmic marginal like-
lihood in the following section.

B. Maximization of the marginal likelihood

Substituting Eq(44) for Eq. (45), we get
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nonlinear simultaneous equations:
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1 1 -1 E 1 0.5 .zj '§

== —_— = —_— 5 045 17°% £

h K BG K .. . 1 2 =
1+—k BG+h+ — © g.40 1°° —GE)

h 2r 3 158 =

5 0% 160 &

> o

+ E |7'k|2 5. (50) 9‘)0.30._ {-6.2 5

K ol Am A C 025 lea E

2r?| BGy+h+ — 3 (C) o

2r = {68 €

0.20 <

) =

We can then determine the convergence point by means of a~9%1° (B) {70
iterative calculation. 0.101 ! 72 9
-~ 0 1 2 3 4 5 6 -

We next determined the unknown hyperparametelhy P g

maximizing the marginal likelihood, assuming th,ét=,8
andh=h. Thus, we restricted ourselves to the case, where FIG. 4. Mean squared error and marginal likelihood. Horizontal
the generation model of the image was already known, agxis denotes hyperparametey left vertical axis denotes mean
was B andh. Curve(C) in Fig. 1 shows the mean squared squared errorB) given by Eg.(35); right vertical axis denotes

. . P logarithmic marginal likelihoodC) given by Eq.(47). The param-
rror when the im was r r ing th im
erro en the image was restored using the estimated eters werea=1.0, 8=1.0, h=1.0, and«=3.0. Those used foB

Curve(C) in Fig. 2 shows the estimated correspond to those for cur¢®) in Fig. 1 whena=1.0. Likewise,
~ Note that the difference between cur®) in Fig. 2, the  those used fofC) correspond to those for cur¢€) in Fig. 1 when
limit of the restoration, and curveZ)), obtained by minimiz- 5=1.0.

ing the mean squared error increased with the noise correla-

tion parametera. Therefore, the error obtained by maximiz- 5, original image generated by using hyperparamegers

ing the marginal likelihoodcurve (C) in Fig. 1] increases  _ 5 andh=1.0"2. Figure 5c) shows the same image after
with the noise correlation parametex, This implies that i \/as distorted by the noise shown in Figlbh (a=1.0

without knowing the noise model, estimating the hyperpab:0.75 andc=3.0). The mean squared errés,, between
rameters by maxi_mizing the mar_ginal likelihood does noti o original and distorted images was 0.57. Figufe)5
work well. That is, the conventional uncorrelated noisegp ows the image after it was restored using the complete
model cannot cr(])_pe with spgnally _co_rrelgted n0|hse. inal restoration model: the generation model and the noise model
_ To confirm this, we used maximization of the marginal\yere consistent with the original models, and optimum val-
likelihood to estimate8 andh—the hyperparameters of the ues were used for the hyperparameters. Wreri.0, curve
image-generation probability—as well as Curve (D) in  (A) in Fig. 1 corresponds to Fig(#), and the restored mean
Fig. 1 shows the mean squared error estimated by using hyquared erroifz, is 0.27. Figure &) shows the image after
perparameter@, h, andr. Curve (D) in Fig. 2 shows the it was restored using an uncorrelated noise model with hy-

obtainedr, and Fig. 3 shows the obtaingdandh. The error
shown by curvéD) in Fig. 1 is much greater than that shown
by curve C).

Next, we demonstrate that the logarithmic marginal like-
lihood, curve(C) in Fig. 1, does not have a local maximum
and that the iteratively obtained solution of E49) corre-
sponds to the global maximum. CuryB) in Fig. 4 shows
the mean squared errdf;, given by Eq.(35), and curve/C)
shows the logarithmic marginal likelihood, [Pyp(7) ],

given by Eq.(47). The horizontal axis denotes Curve (B)

shows thatE; takes a minimum valuegE;=0.12, atr
=3.2. The parameters used for cuf® correspond to those
for curve (B) in Fig. 1 whena=1.0. Curve(C) shows that
the logarithmic marginal likelihood takes a maximum value,

E,=0.28, atr =0.2. The parameters used for cui@ cor-
respond to those for curv€) in Fig. 1 whena=1.0. The
important point is that the logarithmic marginal likelihood,
curve (C) in Fig. 4, does not have a local maximum.

C. Sample of images (d)bm;\??:gm ‘°L'y"“’m;'2n'3;a"'.;;°"
. . e . mean squared error marginal likelihood

Next, we show the practical significance of these differ-
ences for a typical set of artificial images. Figuf@)Shows FIG. 5. Artificial imagesN=64°.
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0.6

0.5

04
(i) 5=05,h=10%, K=7.0

0.3

Original image 0.2 "
(i) s=1.0,r=10, K=30

0.1

Mean squared error

0.0
0.0 0.2 0.4 0.6 0.8 1.0

a from Eq.(10)

FIG. 7. Mean squared error between original image and restored
image. The horizontal axis denota$rom Eq.(10), and the vertical
axis denotes the mean squared error. As a criterion, the optimal
decode given by Eq37) is used. The parametebs=0.75, andN
=64 are fixed. For the solid liné), the other parameters were set
as=1.0, h=1.0, andx=3.0. For the dashed lingi), the other
parameters were set @&=0.5, h=10"%, andx=7.0.

For the original image, we used the Gaussian model rep-
resented by Eq(l), which has neighboring interactions on
each pixel. For the noise image, we used the Gaussian model
represented by Ed8), in which the interaction is Gaussian
functionally decreased. We expected the difference between
these two models to become conspicuously large m@ear

Distorted image Restored image =1.0, and this difference between the models would enable
a|l B3| & » | E.| E, successful restoration near1.0. Figure 8 shows the typi-
0.0 | 091 [1.7x10% [ 1.13 | 0.57 | 0.42 cal images about curvéi) of Fig. 7. The distorted image
05 | 0.76 [1.1x 10 | 0.86 | 0.60 [ 0.46 was most difficult to restore in Fig. 8 whem=0.55, as

10 0s4 [08x10% | 057 0.84]0.58 shown in curveii) of Fig. 7. In this case, the original and the

noise images were visually similar; more precisely, the cor-
relation lengths of the two images were similar. Thus, to
perparameters obtained by maximizing the marginal likeli-successfully restore a distorted image, it is desirable that the
hood. Whena=1.0, curve(D) in Fig. 1 corresponds to Fig. statistical properties of the original image should be different
5(e), and the restored mean squared error is 0.45. The imageom those of the noise image.

in Fig. 5(d) resembles the original one, Fig(ap, while the

one in Fig. %e) is similar to the distorted one in Fig(& and
looks slightly out of focus.

Furthermore, we show the results when natural images
were used. Figure 6 shows the natural images and a table of
the estimated parameters. We uded0.75 and«=3.0 for
the noise parameters and three valuesafd@.0, 0.5, and 1.0.
The three images on the left are distorted, and those on the

right are the same images restored ustgh, andr esti-
mated using the maximized marginal likelihood. In this
simulation as wellE; increased with the noise correlation
parametera. This tendency is reflected in the three restored
images. Fora= 1.0, the lower right image, the noise looks
like a stain that was not completely removed.

FIG. 6. Natural imagesN=64°.

=0673) (B )
D. Discussion Original image Noise image  Restored image

Here, we consider why lin€d) in Fig. 1 tends to decrease FIG. 8. Typical images about cun(@) of Fig. 7.N=64. Pa-
asa approaches 1.0. This phenomenon appears to be Univefmeters for the original images weg=0.5 andh=10"%. The
sal, and also occurs with another parameter set as shown {free original prepared images were the same. Parameters for noise
curve (i) of Fig. 7. For reference, we also show lifi8,  images were8=0.5, h=10"* «x=7.0, andb=0.75. Onlya was
which is based on the parameter set that was used in curanged. Note that whea=0.55, the original and noise images
(A) of Fig. 1 with onlyN changed tdN=64°. (Note that line  were visually similar, and the restoration quality was lower in this
(A) is independent oN). case.
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Here, we summarize our explanation of why li(® in symmetric matrices. We used the Fourier transformation to
Fig. 1 decreases near=1.0. Asa approaches 1.0, the mean diagonalize the covariance matrices, which enabled us to ap-
squared error decreases because the difference of the staiidy various forms of statistical analysis. We obtained the ex-
tical properties, especially the correlation length, between thgected value of a restored image and obtained the optimal
two images enables easier restoration. Conversely, the meaalytical hyperparameters by minimizing the mean squared
squared error is greater at=0.55 on line(ii) in Fig. 7 be-  error and used these hyperparameters to determine the gen-
cause the correlation-length similarity between the imagegration and noise models. Furthermore, we discussed
makes it difficult to distinguish between them, and that alsqynether the conventional spatially uncorrelated noise model
makes it difficult to restore the distorted image. To ensure,qiq cope with the spatially correlated noise or not. We used
;uccessful restoration, the correlation length of Fhe pnglna{wo methods to estimate the hyperparameters: minimizing
image should be different from that of the noise image,o mean squared error and maximizing the marginal likeli-

which is the case whea=0.00 anda=1.00 in Fig. 8. hood. The difference between the errors obtained using the
two methods increased with the noise correlation parameter.
V. CONCLUSION The restoration error was larger when we used the hyperpa-

We investigated the use of the Bayesian inference to retameters obtained using the maximization of the marginal
store images under conditions of spatially correlated noisdikelihood method. Thus, the conventional spatially uncorre-
We assumed that both the original image and the noisé&ted noise model could not cope with the spatially correlated
obeyed a Gaussian distribution composed of translationaloise.
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