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Statistical mechanics of the Bayesian image restoration under spatially correlated noise
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We investigated the use of the Bayesian inference to restore noise-degraded images under conditions of
spatially correlated noise. The generative statistical models used for the original image and the noise were
assumed to obey multidimensional Gaussian distributions, whose covariance matrices are translational invari-
ant. We derived an exact description to be used as the expectation for the restored image by the Fourier
transformation and restored an image distorted by spatially correlated noise by using a spatially uncorrelated
noise model. We found that the resulting hyperparameter estimations for the minimum error and maximal
posterior marginal criteria did not coincide when the generative probabilistic model and the model used for
restoration were in different classes, while they did coincide when they were in the same class.
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I. INTRODUCTION

Recent research has shown that the Bayesian inferen
a useful approach to the image restoration problem@1–3#.
However, previous research has usually assumed that th
perimposed noise is not correlated between pixels@1–12#.
Statistical mechanics provides a useful method for analyz
the image restoration problem@4,5#. Still, when we take op-
tical effects into consideration, it seems natural to take s
tially correlated noise into account. We have investigated
age restoration under the condition of spatially correla
noise. We considered a case, in which both the original
age and noise obey a Gaussian distribution compose
translational-symmetric matrices. We were able to diagon
ize the Gaussian distribution by using Fourier transform
tion. While previous research was done using spatially
correlated noise, we considered the availability of a spati
uncorrelated noise model against the spatially correla
noise.

We considered two methods for estimating the hyper
rameters. The first is minimizing the mean squared erro
the hyperparameters are set so that the mean squared e
minimized. However, minimizing the mean squared error
not applicable to the image restoration problem because
need the original image to practice this method. The sec
method is maximizing the marginal likelihood@6#—the hy-
perparameters are estimated by maximizing the marg
likelihood acquired from only the distorted image. When t
noise probabilities for generating and restoring coinciden
are the same, the results given by the two methods are
same. When the probabilities are different, we found t
they are not same.

II. MODEL

The images we see in our daily life are always two
mensional, although we assume ad-dimensional image for
mathematical generalization, where the length of each sid
L and the total number of pixels,N, is Ld. The ith pixel
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value,j i , of an original image can be written in a multipl
Gaussian distribution as

P~j!5
1

Zprior~b,h!
exp@2H~j,b,h!#, ~1!

H~j,b,h!5jT~bG1hI !j, ~2!

whereb andh are positive scalar values,G is a matrix, and
I is the unit matrix. The partition function,Zprior(b,h), is
given by

Zprior~b,h!5~2p!N/2u2~bG1hI !u21/2. ~3!

Note that Eq.~2! is called the Hamiltonian in statistical me
chanics. In this paper, we argue that the matrixG is transla-
tional invariant and that elementGi,j is given @5# by

Gi,j52dd ( i2 j),02(
d

d ( i2 j),2d2(
d

d ( i2 j),d , ~4!

where thed-dimensional vectord is

d5~1,0, . . . ,0!,~0,1,0, . . . ,0!, . . . ,~0, . . .,0,1!. ~5!

The d i,j in Eq. ~4! is the Kronecker delta, which is assume
to be

d i,j5H 1 ~ i5 j!

0 ~ iÞ j!.
~6!

Equation ~4! means that interactions occur only betwe
nearest-neighbor pixels. Ifb takes a large value, i.e., th
interaction of the first term has a large effect, the neighbor
pixels tend to take the same value. Whenh is large, the
absolute value of the pixels tends to be small. Furtherm
we use a periodic boundary condition,

ji5ji1Ld . ~7!

The distorted image,t5$t i%, is generated according to th
following conditional probability, which obeys a Gaussia
distribution:
©2002 The American Physical Society04-1
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Pout~tuj!5
1

Znoise
expF2

1

2
~t2j!TR21~t2j!G , ~8!

Znoise~R!5~2p!N/2uRu1/2, ~9!

whereR is a translational invariant covariance matrix. In th
paper, we consider the following spatially correlated nois

Ri,j5~12a!b2d i,j1ab2expF2
~ i2 j!2

k2 G , ~10!

0<a<1. The noise obeys an identical independent Gaus
distribution with mean 0 and varianceb2, whena50.

A general strategy commonly used in image restoratio
to apply the Bayes formulation to the posterior probabili
Here,s is a restoration image based on the Bayes formu
tion. When a distorted image,t, is given, one can use th
formulation to calculate the restored image,s,

P~sut!5
Pout~tus!P~s!

E dsPout~tus!P~s!

5
exp@2He f f#

E ds exp@2He f f#

,

~11!

where

He f f5sT~bG1hI !s1 1
2 ~t2s!TR21~t2s! ~12!

is an effective Hamiltonian.

III. THEORY

A. Expectation of the restored image

Since the covariance matrices given by Eqs.~4! and ~10!
are translational invariant, they can be diagonalized using
discrete Fourier transformation.

The discrete Fourier transformation is

j̃k5
1

AN
(

j
j je

2 ik• j ~13!

and the inverse Fourier transformation is

j j5
1

AN
(

k
j̃ke

ik• j, ~14!

wherei is the imaginary unit, andk is ad-dimensional vector
same asj, and the degree of freedom isLd:

(
j

5Ld5N, (
k

5Ld5N. ~15!

Moreover, each component ofk takes the value

0,
2

L
p,

4

L
p, . . . ,

2~L21!

L
p. ~16!

We can diagonalize Eq.~1! by using the Fourier representa
tion,
06670
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P~j!5
1

Zprior~b,h!
expF2(

k
~bG̃k1h!j̃kj̃2kG , ~17!

G̃k5(
d

@222 cos~k•d!#. ~18!

Furthermore, we diagonalizeRi,j in Eq. ~10!,

R̃k5~12a!b21ab2(
l

e2 l 2/k2
cos~k• l!, ~19!

where the range ofl, which is a component of vectorl, is
given by

2~L21!< l<L21. ~20!

We can execute the Fourier transformation on the inside
exp in Eq.~8! in the same way as in Eq.~1!,

Pout~tuj!5
1

Znoise
expF2 1

2 (
k

R̃k
21~ t̃k2 j̃k!~ t̃2k2 j̃2k!G .

~21!

We define^•& as denoting the thermal average based on
Bayes formula for the posterior probabilityP(sut) in Eq.
~11!. The expectation of the restored image,s j , is thus as-
sumed to be

^s j&5
1

AN
(

k
^s̃k&e

ik• j. ~22!

Using Eq.~11!, the expectation of the Fourier componen
sk , can be written as

^s̃k&5E )
k8

ds̃k8s̃kP~sut!5

E )
k8

ds̃k8s̃ke
2 Ĥ̃e f f

E )
k8

ds̃k8e
2 Ĥ̃e f f

,

~23!

where Ĥ̃e f f is obtained by applying the Fourier transform
tion to Eq.~12! as follows:

Ĥ̃e f f5(
k

~ b̂G̃k1ĥ!s̃ks̃2k1(
k

1

2R̂̃k

~ t̃k2s̃k!

3~ t̃2k2s̃2k!. ~24!

b, h, andR̃k are unknown adjustable parameters that de
mine the properties of the original image and noise. One
our major focuses here is how to estimate these hyperpa
eters precisely.

To proceed further, we have to assume some explicit fo
of the source prior and noise posterior formations, which
used when we restore the image. In this paper, we de
both of these probability formations as the same format
except that they have different hyperparameters. We de
4-2
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the hyperparameters that correspond tob, h, andR̃k asb̂, ĥ,

and R̂̃k , respectively. IfR̂̃k is independent ofk, the noise is
spatially uncorrelated.

Substituting

Ẫk5b̂G̃k1ĥ1
1

2R̂̃k

, B̂̃k5
1

2R̂̃k

~25!

into Eqs.~23! and ~24!, we get

^s̃k&5
B̂̃k

Ẫk

t̃k . ~26!

Consequently,̂s j& in Eq. ~22! is given by

^s j&5
1

N (
k

(
i

t i

1

2R̂̃k

cos@k•~ j2 i!#

b̂G̃k1ĥ1
1

2R̂̃k

. ~27!

In this paper, we regard Eq.~27! as representing the restore
image.

B. Minimization of mean squared error

In this section, we estimate hyperparametersb̂, ĥ, andR̂̃k
by using the criterion defined by Eq.~27! for minimizing the
mean squared error between the original and restored
ages. The expectation of this mean squared error,E1, is rep-
resented by

E15 I 1

N (
j

~j j2^s j&!2I , ~28!

wherei•i denotes the data average of a simultaneous di
bution P(t,j)5Pout(tuj)Ps(j).

Applying the Fourier transformation to Eq.~28!, we can
derive the next representation,

E15
1

N (
k

i~ j̃k2^s̃k&!~ j̃2k2^s̃2k&!i . ~29!

SinceP(t,j) is diagonalized by the Fourier transformatio
we can easily calculate eachk as follows:

i~ j̃k2^s̃k&!~ j̃2k2^s̃2k&!i ~30!

5
1

ZE E dj̃kdt̃kU j̃k2
B̂̃k

Ẫk

t̃kU2

expF2AkU j̃k2
B̃k

Ãk

t̃kU2

2S B̃k2
B̃k

2

Ãk
D u t̃ku2G ~31!
06670
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5
1

2Ãk

1S B̃k

Ãk

2
B̂̃k

Ẫk
D 2

1

2B̃k2
2B̃k

2

Ãk

, ~32!

whereÃk , B̃k , andZ substitute for

Ãk5bG̃k1h1
1

2R̃k

, B̃k5
1

2R̃k

, ~33!

Z5E E dj̃kdt̃kexpF2ÃkU j̃k2
B̃k

Ãk

t̃kU2

2S B̃k2
B̃k

2

Ãk
D u t̃ku2G .

~34!

Therefore, the mean squared error is represented by

E15
1

2N (
k F 1

bG̃k1h1
1

2R̃k

1S 1

2R̃k

bG̃k1h1
1

2R̃k

2

1

2R̂̃k

b̂G̃k1ĥ1
1

2R̂̃k

D 2

3

bG̃k1h1
1

2R̃k

1

2R̃k

~bG̃k1h!
G . ~35!

When the conditions

b̂5b, ĥ5h, and R̂̃k5R̃k ~36!

hold, the mean squared error takes the following minimu

E1min
5

1

2N (
k F 1

bG̃k1h1
1

2R̃k

G . ~37!

More precisely, when the ratiob̂:ĥ: R̂̃k is equal to the ratio
b:h:R̃k , E1 is the minimum given by Eq.~37!. Note that this
equation represents the limit of the restoration.

Likewise, we can derive the mean squared error,E2, be-
tween the original image and the distorted image as be
represented by

E25 I 1

N (
j

~ j̃ j2 t̃ j!
2I ~38!
4-3
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5
1

N (
k

R̃k5
1

N (
i

R̃i,i5b2. ~39!

E2 depends only on the diagonal element of the noise co
riance matrix.

C. Maximization of the marginal likelihood

The minimized mean squared error criterion, genera
cannot be used since the unknown original image itsel
needed to evaluate the squared error. If we already had
original image, there would be no need to restore the
torted image. Hence, in this paper, we argue for using
maximization of the marginal likelihood.

As shown in Eqs.~1! and~8!, we already know the sourc
prior and noise probabilities. Using both probabilities, w
can deriveP(t),

P~t!5E dSPout~tuS;R̂!P~S;b̂,ĥ!. ~40!

P(t) is called the marginal likelihood.
Maximization of the marginal likelihood is used to set t

hyperparameters,b̂,ĥ, andR̂, to use, and to obtain the max
mum value ofP(t) for distorted imaget.

With Eqs.~3! and~9!, the marginal likelihood is given by

P~t!5
Zposterior~ b̂,ĥ,R̂!

Znoise~R̂!Zprior~ b̂,ĥ!
, ~41!

where

Zposterior~ b̂,ĥ,R̂!5)
k
E dS̃kexp~2 Ĥ̃e f f! ~42!

FIG. 1. Mean squared error between original image and e
restored image. Horizontal axis denotesa from Eq. ~10!; vertical
axis denotes the mean squared error.~A! Optimum decode given by
Eq. ~37!. ~B! Restored using criterion of minimum restored err

~C! Restored usingr̂ estimated by maximizing marginal likelihood

~D! Restored usingb̂,ĥ, and r̂ , all estimated by maximizing mar
ginal likelihood.~E! Error before decoding given by Eq.~39!.
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5pN/2)
k

1

AẪk

expF 2S B̂̃k2
B̂̃k

2

Ẫk
D u t̃ku2G . ~43!

Because ln is a monotonically increasing function th
maximizes the logarithmic marginal likelihood, maximizin
ln P(t) is equivalent to maximizingP(t).

The logarithmic marginal likelihood lnP(t) can be writ-
ten as

ln@P~t!#5 lnS Zposterior~ b̂,ĥ,R̂!

Znoise~R̂!Zprior~ b̂,ĥ!
D

52
1

2 (
k

lnS b̂G̃k1ĥ1
1

2R̂̃k
D 2

N

2
ln~2p!

2
1

2 (
k

ln~ R̂̃k!1
1

2 (
k

ln~ b̂Gk1ĥ!

2(
k

~ b̂G̃k1ĥ!
1

2R̂̃k

b̂G̃k1ĥ1
1

2R̂̃k

u t̃ku2. ~44!

IV. RESULT

In this section, we consider a method to restore an im
distorted by spatially correlated noise by means of the s
tially uncorrelated noise model. To do this, we replaceR as
one of the hyperparameters,

R̂i,j5 r̂d i,j , R̂̃k5 r̂ . ~45!

We can now write Eq.~27! as

^s j
app&5

1

N (
k

(
i

t i

1

2r
cos@k•~ j2 i!#

b̂G̃k1ĥ1
1

2r̂

. ~46!

Figure 1 shows the analytical and simulated mean squa
errors between the original image and each restored im
Fig. 2 shows the estimatedr̂ , and Fig. 3 shows the estimate
parametersĥ andb̂. We used 100 artificially generated two
dimensionalN5162 images with hyperparametersb51.0,
h51.0, b50.75, andk53.0. The horizontal axes of thes
three figures denotea from Eq. ~10!; a represents the mag
nitude of the spatial correlation of the noise (a50 implies no
spatial correlation!.

A. Minimization of mean squared error

Curve~E! in Fig. 1 represents errorE2 given by Eq.~39!,
that is, the mean squared error between the original and
torted images.~The dashed line represents the analytical

h

4-4
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ror, and the solid line represents the simulated results.! Be-
cause the numbers of pixels (N5162) and samples~100!
were finite, the simulated results have some fluctuation. T
fluctuation tends to asymptotically disappear as the num
are increased.

Curve~A! in Fig. 1 represents minimum errorE1min
given

by Eq. ~37!, that is, the mean squared error between
original and distorted images restored using the spatially
related noise model with the best parameters. Hence,E1min

implies the limits of image restoration—no further error r
duction is possible. Curve~B! in Fig. 1 represents the error i
an image restored using the uncorrelated noise model.

restoration was done using hyperparameterr̂ from Eq. ~28!,
which was acquired minimizing the mean squared error.~The
dashed line represents the analytical results, and the s
line represents the simulated results.! Curve ~B! in Fig. 2

shows the optimal values ofr̂ by minimizing the mean
squared error.

Note that whena50.0, curve~A! in Fig. 1 is equal to
curve (B). Curve ~B! in Fig. 1 shows the optimum perfor
mance when using the minimization of the mean squa
error as the criterion. However, as mentioned, the hype
rameters cannot be estimated in practice by minimizing
mean squared error. Therefore, we will discuss how the e
can be reduced by maximizing the logarithmic marginal lik
lihood in the following section.

B. Maximization of the marginal likelihood

Substituting Eq.~44! for Eq. ~45!, we get

FIG. 2. Estimatedr̂ . Horizontal axis denotesa from Eq. ~10!;

vertical axis denotes average estimatedr̂ obtained by maximizing

marginal likelihood or optimalr̂ obtained by using criterion o

minimum restored error. Solid line~B! denotesr̂ used in curve~B!

of Fig. 1, dashed line~C! denotesr̂ used in curve~C! of Fig. 1, and

dotted line~D! denotesr̂ used in curve~D! of Fig. 1.
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ln@Papp~t!#52
1

2 (
k

lnS b̂G̃k1ĥ1
1

2r̂
D 2

N

2
ln~2p!

2
N

2
ln~ r̂ !1

1

2 (
k

ln~ b̂G̃k1ĥ!

2(
k

~ b̂G̃k1ĥ!
1

2r̂

b̂G̃k1ĥ1
1

2r̂

u t̃ku2. ~47!

We can derive the conditions necessary for the extre
Papp(t), and we can represent them using the followi
nonlinear simultaneous equations:

1

b̂
5S (

k

G̃k

G̃k1
ĥ

b̂
D 21F(

k

G̃k

b̂G̃k1ĥ1
1

2r̂

1(
k

utku2
G̃k

2r̂ 2S b̂G̃k1ĥ1
1

2r̂
D 2G , ~48!

r̂ 5
1

2N (
k

G̃k

b̂G̃k1ĥ1
1

2r̂

1
1

N (
k

u t̃ku2
~ b̂G̃k1ĥ!2

S b̂G̃k1ĥ1
1

2r̂
D 2 ,

~49!

FIG. 3. Estimatedĥ ~dotted line! and b̂ ~dashed line!. Both
values were averaged with respect to 100 artificially generated
ages. Horizontal axis denotesa from Eq.~10!; vertical axis denotes

average estimatedĥ or b̂ or actualh or b. Solid line denotes actua
h(5b51.0).
4-5
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1

ĥ
5S (

k

1

11
b̂G̃k

h
D 21F(

k

1

b̂G̃k1ĥ1
1

2r̂

1(
k

utku2
1

2r̂ 2S b̂G̃k1ĥ1
1

2r̂
D 2G . ~50!

We can then determine the convergence point by means o
iterative calculation.

We next determined the unknown hyperparameter,r̂ , by
maximizing the marginal likelihood, assuming thatb̂5b

and ĥ5h. Thus, we restricted ourselves to the case, wh
the generation model of the image was already known
was b and h. Curve ~C! in Fig. 1 shows the mean square
error when the image was restored using the estimater̂ .
Curve ~C! in Fig. 2 shows the estimatedr̂ .

Note that the difference between curve~B! in Fig. 2, the
limit of the restoration, and curve (C), obtained by minimiz-
ing the mean squared error increased with the noise cor
tion parameter,a. Therefore, the error obtained by maximi
ing the marginal likelihood@curve ~C! in Fig. 1# increases
with the noise correlation parameter,a. This implies that
without knowing the noise model, estimating the hyperp
rameters by maximizing the marginal likelihood does n
work well. That is, the conventional uncorrelated no
model cannot cope with spatially correlated noise.

To confirm this, we used maximization of the margin
likelihood to estimateb̂ and ĥ—the hyperparameters of th
image-generation probability—as well asr̂ . Curve ~D! in
Fig. 1 shows the mean squared error estimated by using
perparametersb̂, ĥ, and r̂ . Curve ~D! in Fig. 2 shows the
obtainedr̂ , and Fig. 3 shows the obtainedb̂ andĥ. The error
shown by curve~D! in Fig. 1 is much greater than that show
by curve (C).

Next, we demonstrate that the logarithmic marginal lik
lihood, curve~C! in Fig. 1, does not have a local maximu
and that the iteratively obtained solution of Eq.~49! corre-
sponds to the global maximum. Curve~B! in Fig. 4 shows
the mean squared error,E1, given by Eq.~35!, and curve~C!
shows the logarithmic marginal likelihood, ln@Papp(t)#,
given by Eq.~47!. The horizontal axis denotesr̂ . Curve~B!

shows thatE1 takes a minimum value,E150.12, at r̂
53.2. The parameters used for curve~B! correspond to those
for curve ~B! in Fig. 1 whena51.0. Curve~C! shows that
the logarithmic marginal likelihood takes a maximum valu
E150.28, atr̂ 50.2. The parameters used for curve~C! cor-
respond to those for curve~C! in Fig. 1 whena51.0. The
important point is that the logarithmic marginal likelihoo
curve ~C! in Fig. 4, does not have a local maximum.

C. Sample of images

Next, we show the practical significance of these diff
ences for a typical set of artificial images. Figure 5~a! shows
06670
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an original image generated by using hyperparameterb
50.5 andh51.024. Figure 5~c! shows the same image afte
it was distorted by the noise shown in Fig. 5~b! (a51.0,
b50.75, andk53.0). The mean squared error,E2, between
the original and distorted images was 0.57. Figure 5~d!
shows the image after it was restored using the comp
restoration model: the generation model and the noise m
were consistent with the original models, and optimum v
ues were used for the hyperparameters. Whena51.0, curve
~A! in Fig. 1 corresponds to Fig. 5~d!, and the restored mea
squared error,E1, is 0.27. Figure 5~e! shows the image afte
it was restored using an uncorrelated noise model with

FIG. 4. Mean squared error and marginal likelihood. Horizon

axis denotes hyperparameterr̂ ; left vertical axis denotes mea
squared error~B! given by Eq. ~35!; right vertical axis denotes
logarithmic marginal likelihood~C! given by Eq.~47!. The param-
eters werea51.0, b51.0, h51.0, andk53.0. Those used forB
correspond to those for curve~B! in Fig. 1 whena51.0. Likewise,
those used for~C! correspond to those for curve~C! in Fig. 1 when
a51.0.

FIG. 5. Artificial images.N5642.
4-6
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perparameters obtained by maximizing the marginal lik
hood. Whena51.0, curve~D! in Fig. 1 corresponds to Fig
5~e!, and the restored mean squared error is 0.45. The im
in Fig. 5~d! resembles the original one, Fig. 5~a!, while the
one in Fig. 5~e! is similar to the distorted one in Fig. 5~c! and
looks slightly out of focus.

Furthermore, we show the results when natural ima
were used. Figure 6 shows the natural images and a tab
the estimated parameters. We usedb50.75 andk53.0 for
the noise parameters and three values fora: 0.0, 0.5, and 1.0.
The three images on the left are distorted, and those on
right are the same images restored usingb̂, ĥ, and r̂ esti-
mated using the maximized marginal likelihood. In th
simulation as well,E1 increased with the noise correlatio
parameter,a. This tendency is reflected in the three restor
images. Fora51.0, the lower right image, the noise look
like a stain that was not completely removed.

D. Discussion

Here, we consider why line~A! in Fig. 1 tends to decreas
asa approaches 1.0. This phenomenon appears to be un
sal, and also occurs with another parameter set as show
curve ~ii ! of Fig. 7. For reference, we also show line~i!,
which is based on the parameter set that was used in c
~A! of Fig. 1 with onlyN changed toN5642. ~Note that line
~A! is independent ofN).

FIG. 6. Natural images.N5642.
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For the original image, we used the Gaussian model r
resented by Eq.~1!, which has neighboring interactions o
each pixel. For the noise image, we used the Gaussian m
represented by Eq.~8!, in which the interaction is Gaussia
functionally decreased. We expected the difference betw
these two models to become conspicuously large neaa
51.0, and this difference between the models would ena
successful restoration neara51.0. Figure 8 shows the typi
cal images about curve~ii ! of Fig. 7. The distorted image
was most difficult to restore in Fig. 8 whena50.55, as
shown in curve~ii ! of Fig. 7. In this case, the original and th
noise images were visually similar; more precisely, the c
relation lengths of the two images were similar. Thus,
successfully restore a distorted image, it is desirable that
statistical properties of the original image should be differ
from those of the noise image.

FIG. 7. Mean squared error between original image and resto
image. The horizontal axis denotesa from Eq.~10!, and the vertical
axis denotes the mean squared error. As a criterion, the opt
decode given by Eq.~37! is used. The parametersb50.75, andN
5642 are fixed. For the solid line~i!, the other parameters were s
as b51.0, h51.0, andk53.0. For the dashed line~ii !, the other
parameters were set asb50.5, h51024, andk57.0.

FIG. 8. Typical images about curve~ii ! of Fig. 7. N5642. Pa-
rameters for the original images wereb50.5 andh51024. The
three original prepared images were the same. Parameters for
images wereb50.5, h51024, k57.0, andb50.75. Onlya was
changed. Note that whena50.55, the original and noise image
were visually similar, and the restoration quality was lower in th
case.
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Here, we summarize our explanation of why line~A! in
Fig. 1 decreases neara51.0. Asa approaches 1.0, the mea
squared error decreases because the difference of the s
tical properties, especially the correlation length, between
two images enables easier restoration. Conversely, the m
squared error is greater ata50.55 on line~ii ! in Fig. 7 be-
cause the correlation-length similarity between the ima
makes it difficult to distinguish between them, and that a
makes it difficult to restore the distorted image. To ens
successful restoration, the correlation length of the origi
image should be different from that of the noise imag
which is the case whena50.00 anda51.00 in Fig. 8.

V. CONCLUSION

We investigated the use of the Bayesian inference to
store images under conditions of spatially correlated no
We assumed that both the original image and the no
obeyed a Gaussian distribution composed of translatio
.

s.
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symmetric matrices. We used the Fourier transformation
diagonalize the covariance matrices, which enabled us to
ply various forms of statistical analysis. We obtained the
pected value of a restored image and obtained the opt
analytical hyperparameters by minimizing the mean squa
error and used these hyperparameters to determine the
eration and noise models. Furthermore, we discus
whether the conventional spatially uncorrelated noise mo
could cope with the spatially correlated noise or not. We u
two methods to estimate the hyperparameters: minimiz
the mean squared error and maximizing the marginal lik
hood. The difference between the errors obtained using
two methods increased with the noise correlation parame
The restoration error was larger when we used the hype
rameters obtained using the maximization of the margi
likelihood method. Thus, the conventional spatially uncor
lated noise model could not cope with the spatially correla
noise.
ch.
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